
Cuckoo Hashing
Overview of performance improvements in real-world, hardware

applications

Katharina Fey

August, 2016
Humboldt-Universität zu Berlin

Abstract
Cuckoo hashing is a highly efficient
multiple-choice hashing data structure
with amortised constant insertion and
lookup times, good space efficency and
low chance of overflow. However it has
a non-neglectable chance that insertion
will take Ω(log(n)) instead of Θ(1). This
makes it unsuitable for certain real-time
applications such as network routers or
RAID controllers.

Since it’s introduction in 2001 by Pagh
and Rodler many researchers have pub-
lished attempts at de-amortising the per-
formance of cuckoo hashing. This includes
different implementations and additions
to make it a viable choice when dealing
with real-time applications where a (even
if polynomially small) chance of Ω(log(n))
is unacceptable.

In this paper we will give an overview of
existing research on cuckoo hashing and in
detail examine an attempt made by Kirsch
and Mitzenmacher which was later refined
by Arbitman, Naor, and Segev to a guar-
anteed Θ(1) insert time which makes it vi-
able for certain low-latency harware rout-
ing tasks.

1 Introduction

A dictionary is an abstract data type
widely used throughout computer science.
It keeps a set of keys K in relation to a set
of values V in a finite collection called C.
Queries such as ”k ∈ K?” provide access
to the respective values of V for insertion,
lookup, deletion and update.

To understand how to most efficiently
implement a dictionary we first need to
understand some basic properties of hash
functions. A hash function is always de-
terministic so that a function H with in-
put k always yields the same H(k)→ k′.

A hash function also always has a pre-
determined output range of values. A very
simple example of that would be the hash
function H(k) = k mod m where m is
a scaling factor that can adjust the out-
put range. With that in mind the output
range is H(k) = n with n ∈ {0, ..., 5} for
m = 6.

In addition to that a good hash func-
tion will also provide uniformity across its
possible outputs. This means that every
value in a possible output range should

1

have an eqaul chance of being generated
by an input. What that often also in-
cludes is that input values that are sim-
ilar don’t map to similar hash output val-
ues. And while to some extent this is an
idealised assumption, there are hash func-
tions that attempt to aproximate this be-
haviour.[OP03]

On these principles we define a hash
function H which takes a variable length
string input so that H(k) → k′ is deter-
ministic and k′ is a number of maximum
size Lk. Suppose C is stored in a table (of
maximum size Lk) with m entries num-
bered 0, 1, ...,m − 1 then an item (k, v)
can be inserted by taking the value v and
storing it at a position in the table m de-
termined by the output of H(k) → k′ so
that m(k′)→ v.

In section 1.1 and 1.2 we discuss perfor-
mance parameters that are important to
consider when implementing a dictionary
through hash functions.

In section 2 we introduce cuckoo hash-
ing, showing to have the properties of the
perfect dynamic hashing scheme described
in [Die+94] by Dietzfelbinger et al.

Finally in section 3 we examine a
method first introduced by Kirsch and
Mitzenmacher in [KM07] and later on
refined by Arbitman, Naor, and Segev
in [ANS09] solving these problems and
analyse their performance with real world
data (in use cases outside those of classic
cuckoo hashing) to hightlight the perfor-
mance improvements and compare them
against regular cuckoo hashing in certain
environments.

1.1 Performance
The performance of a hashtable is depen-
dant on a few factors. The three main
parameters for performance analysis are
lookup time, update time and space com-

plexity. Because an update operation to
the table is merely a successful lookup,
followed by a simple write operation and
an insertion is an unsuccessful lookup, fol-
lowed by another write operation we can
reduce the significant performance factors
to be lookup time and space complexity.

In theory a perfect hashtable utilising
a perfect hash function has an insert and
lookup time complexity of O(1). How-
ever it would require enough space to store
all possible results (called the Universe) of
hash function H(k) where k is an arbitrary
piece of data. If there are two k that yield
the same k′ under the hash function H we
encounter a collision. Limitation in space
but also imperfections (non uniformity or
limitation of output range) of the chosen
hash function H lead to collisions. These
increase the time complexity of lookup op-
erations and thus any operation performed
on a hash table.

When encountering a collision a ”colli-
sion resolution scheme” or ”collision res-
olution strategy” needs to be applied.
Because hash collisions are deemed un-
avoidable and are responsible for perfor-
mance bottlenecks in hash-based dictio-
naries, these strategies are a major focus
point of research.

A hashmap trades-off time and space
complexity through the selection of a colli-
sion resolution strategy. Ideally we would
be able to handle colliding items in a way
that both items are still accessable in O(1)
while not using more than O(n) space.
Such a strategy would be called the per-
fect collision resolution strategy and can
very often only be approximated.[PR04].

1.2 Collision Resolution
Strategies

Before we consider cuckoo hashing as a
collision resolution strategy we will high-

2

light other strategies due to their popular-
ity [SG09].

1. Chained Hashing

2. Linear Probing

3. Double Hashing

Early theoretical analysis of hashing
schemes was typically done under the as-
sumption that hash function values were
uniformly random and independent. Pre-
cise analyses of the average and expected
worst case behaviors of the above men-
tioned schemes have been made, see e.g.
[PR04]

Linear probing is a strategy where for
a colliding key k with chosen index value
k′, the next slot in the table k′ +1 is cho-
sen if the original space was filled. If this
next space is also occupied k′ + 2 will be
considered.

This strategy utilises the localisation
principle of hash values that (due to their
uniformity) will form groups of items in
the table which means that blank spaces
will be left between groups to be filled.

When utilising the Linear Probing
aproach, we can expect the number
of probes for a successful probe to be
1
2 (1+

1
(1−d)) and for an unsuccessful probe

to be 1
2 (1 +

1
(1−d)2), where d is the occu-

pancy factor of the hash table we are
probing.

Double Hashing is a strategy where for
a colliding key k with chosen index
H1(k) → k′1 the next slot in the table
will be determined by using a different
hash function H2 for which a new k′2 will
be calculated. If the strategy runs out
of hash functions to use or when an up-
per limit is reached, the table is rehashed
completely.

With this strategy the expected costs
are ln 1

1−d

d for a successful lookup with
the longest sequence being O(logn) and
1

1−d for an unsuccessful lookup with the
longest sequence being Θ(log n

log log n).

Chained Hashing is a strategy that doesn’t
consider buckets in the table of a dictio-
nary to be of size 1. Instead of storing
the actual items (a value v and a key k
as satellite data), we store the head to a
linked list of entries in the bucket.

When inserting an item i = (k, v), the
key k is hashed and added to the tail of the
linked list found in the bucket at m(k′).
On retrieval the satelite data (a copy of
the key) is required to find the correct
item in the linked list again.

When using Chained Hashing the num-
ber of probes on successful lookup is 1+ 1

d

and for an unsuccessful lookup 1 + d2

2
with the chain length being relevant in
the lookup times. The maximum chain
length would average out to Θ(log n

log log n).

From the above data we can derive that
chained hashing is better for lookups than
double hashing with double hashing being
better than linear probing [PR04][GS78].

2 Cuckoo Hashing
Cuckoo hashing was first introduced by
Pagh and Rodler in 2004 and describes
a highly efficient multiple choice hashing
dictionary built as the dynamisation of the
static dictionary described in [Pag01] and
later in [Pag06].

A cuckoo dictionary consists of multi-
ple tables and associates multiple hash
functions with these tables. Assume we
have two tables m1 and m2 to store a se-
ries of items from a collection C. We in-

3

sert items into m1 by determining k′1 with
H1(k) → k′1 and m2 by determining k′2
with H2(k)→ k′2.

When inserting an item i1, we first con-
sider table m1. If m1(H1(k) is free, we are
done. If the bucket is filled by a vallue i2,

we remove i2 from it and insert i1 instead.
Afterwards we rehash i2 with H2 to insert
into table m2. This process is repeated
until no more collisions occur.

The following pseudo code describes the
insert operation in more detail.

function insert(x)

if lookup(x) then return
loop MaxLoop times

if T1[h1(x)] = ⊥ then T1[h1(x)]← x; return
x↔ T1[h1(x)]

if T2[h2(x)] = ⊥ then T2[h2(x)]← x; return
x↔ T2[h2(x)]

end loop
rehash(); insert(x);

end

Retrieving an item from the dictionary
is done by hashing a key with multiple
functions and checking different locations
in all of the tables. In our example an
item i = (k, v) can either be found at

m1(k
′) with k′ = H1(k) or m2(k

′) with
k′ = H2(k) but never in both [PR04].

The following pseudo code describes the
lookup operation.

function lookup(x)

return T1[h1(x)] = x ∨ T2[h2(x)] = x

end

[PR04].
In that process loops can occur which

means that each insertion needs to be
monitored for a maximum depth of in-
serts. If said depth is reached new hash
functions are chosen, and both m1 and m2

are rehashed with H3 and H4 respectively.

Figure 2.1 highlights how multiple item
keys hash with different hash functions
and how some values have either looping
or colliding hash values. Loops in particu-
lar mean that some insertions may be im-
possible to resolve.

4

Figure 1: Time graph for insert and delete operations [PR04]

Additionally a test may be conducted
to estimate the population density of both
tables to increase their size to allow for less
collisions during future insertions [PR04].

Figure 1 show some experimental data
collected by Pagh and Rodler. It high-

lights the performance of cuckoo hashing
under lookup, insert and deletion in com-
parison to several different collision reso-
lution strategies over a series of insert op-
erations n ranging up to 222 elements.

Figure 2: Time graph for insert and delete operations [PR04]

The experiments were conducted on an
800MHz Intel® Pentium® III processor
with 16KB of level 1 cache and 256KB
of level 2 ”advanced transfer cache”. The
system had access to another 256MB of
memory on PC100 extension cards.

Analysing the graphs in 1 and 2, it is
clearly visible that all collision resolution
strategies break down past 214 elements in
the collection. Pagh and Rodler speculate

that this is due to the limitation of L1 and
L2 cache of the CPU. Experimental data
on more modern architectures is unfortu-
nately lacking.

What is also visible from the graphs
is that cuckoo hashing demonstrates the
worst insert time performance of all
measured strategies. When considering
lookup, its performance sits between lin-
ear probing and double chained hashing.

5

However when doing delete operations,
cuckoo hashing performs best of the se-
lected strategies, across all data batch
sizes.

The experimental results seem to con-
firm our assumption that insertions into
a cuckoo dictionary can take considerable
time due to ”rehash-chains” where large
parts of the tables will be moved to ac-
comidate new data. Thus on average an
insertion into a cuckoo dictionary takes
O(1) but can require Ω(log(n)) in the
worst-case [KM07].

While the above demonstrated exper-
imental results are excellent at keeping
memory consumption low and guaran-
teeing O(1) lookup times which makes
cuckoo hashing ideal for many software
applications, there are certain (often
hardware) low-latency applications where
cuckoo hashing is unsuitable due to its
non-predictable insert time [DM03].

3 Queued cuckoo hashing
Kirsch and Mitzenmacher presented a
variant of cuckoo hashing centered around
its application in routing hardware to re-
duce the amount of Content Addressable
Memory (CAM) that is required. A CAM
is a hardware circuit that uses data tag-
ging to store limited length data entries
in a cache that allows for constant time
access.

In their proposal they at first focus on
cuckoo hashing with d > 2 subtables,
however later on switch to an implemen-
tation of d > 4. This has shown to be
more practical and offer significant space
savings [Fot+05].

In following examples we will consider
algorithms to use an arbitrary number
of tables to demonstrate the principles

independently of implementational differ-
ences. In addition to that we have a hard-
ware content addressable memory of size
S. An item is either found in one of the
tables or the CAM but never both. And
the lookup code from the previous sec-
tion can be adjusted to allow for checking
inside the CAM.

An insertion can be described with a
series of sub-operations consisting of the
item i that is to be inserted as well as
some metadata that describes what previ-
ous insertion failed and what future inser-
tion should be considered. This metadata
comes in form of a table number.

Assume we want to insert an item i =
(k, v) into this modified cuckoo dictionary.
We attempt to insert it into m1 by com-
puting an index in the table with H1(k)→
k′. If this slot is taken, we add the item to
a sub-operation in addition to some meta-
data which describes that it was insertion
1 and next up to try is table m2.

This insertion sub-operation is then
added to the CAM. After this we are ready
for the next insertion.

This small change gives us the ability
to finish insertions quickly (within a sin-
gle step) while also giving us the memory
efficiency of cuckoo hashing as well as the
ability to keep the hardware costs on the
CAM down.

What this means however is that many
items will end up in the CAM that might
be insertable. And while the CAM will
give us quick access times to our data, it
is desirable to keep the number of items
in it as low as possible. What this means
is that we need to apply a strategy at re-
moving items from the CAM.

Deletions are more difficult in this
modified cuckoo dictionary as operations
are always split into sub–operations and
stored in the queue. A deletion will also
be stored in a queue before it is handled.

6

It might therefore be easier to keep a sec-
ond list of items that have been marked
for deletion until the sub-operation can be
picked from the CAM.

Keeping the number of items in the
CAM low can be accomplished by one of
two strategies. The first requires a dele-
tion in the system to occur which could
potentially free up a slot that blocked us
previously from inserting something into
our tables. This is easily done by checking
items in the CAM for insertability after a
deletion has occured.

The other strategy requires access to an
asyncrhonous runtime environment where
insert operations can be tried continously.
Some of these sub-operations will fail
and add new sub-operations to the queue
which will then be handled at a later
time. It means however that some sub-
operations will be inserted and thus keep
the occupancy of the CAM down [KM07]

3.1 Queue policies
Kirsch and Mitzenmacher introduced a
few queue policies with examples which
have a considerable impact on the perfor-
mance of queued cuckoo hashing. These
policies can be applied to the CAM to al-
low the sub-operations stored in it to be

ordered in a way that is most likely to
yield positive insertions at the beginning
as iterating over the entire CAM might
not always be possible.

The three base queue policies that were
introduced in [KM07] are ”naive”, ”rotat-
ing” and ”PQage”. We will quickly elabo-
rate these policies and show experimental
data with them.

First we define an age parameter. This
parameter is set when an insertion lands
in the CAM. This way the items in the
CAM can be sorted by insert-time.

In the standard cuckoo hashing we pro-
cess an iteration sequentially, only termi-
nating when we have successfully inserted
an item.. With the modifications made
to the dictionary breaking up insertions
into sub-operations and saving them in
the queue this corresponds to placing new
items at the back of the queue while new
sub-operations created by processing an
existing item in the queue yields new items
at the front of the queue.

This approach can give rise to large
queue sizes as a difficult insertion can cre-
ate loops or block other operations at the
back of the queue without resolving the in-
sertion. Because this approach doesn’t use
the ability to re-order items in the CAM,
it is called the native policy.

7

Figure 3: Expected queue sizes for different policies [KM07]

Using our previously defined age pa-
rameter, we can start to re-order items
in the queue. It seems reasonable to as-
sume that newer items in the CAM have
a higher chance of being inserted than
older items. Because this is not possible in
our applications, we will need to let these
items remain in CAM until elements are
removed from the tables. This way we in-
crease the chance of resolving new opera-
tions quickly while letting old operations
rest in the CAM until new places in the ta-
bles are cleared up. We shall call this pol-
icy PQage because it implements a ”Pri-
ority Queue” over the age of the elements.

While this approach does ideal, it is

however difficult to implement and in-
cludes moving vast amounts of items in
the CAM which might require too many
resources in terms of time and space in the
CAM.

The goal is to try to aproximate the be-
haviour of PQage without having to con-
stantly re-order items in the queue. Kirsch
and Mitzenmacher describe a queue policy
they call rotating where we place a new
sub-operation o at the front of the queue if
it is created by some other sub-operation
and its age is at most I. Otherwise we
place it at the back of the queue. There-
fore we priorities items with ages smaller
than I.

8

Figure 4: Expected queue sizes for different policies [KM07]

What this allows is to rotate through
the sub-operations to avoid getting stuck
processing a single failing operation. This
policy is also simpler to implement than
PQage [KM07].

Some experimental data can be found
in Figures 3 and 4 which is from a more
realistic set of experiments for d = 2 and
d = 4 respectively. The experiments fo-
cus on the average size of the queue if the
table is designed for a specific utilisation
factor u where 1 represents a completely
full and 0 a completely empty table. Val-
ues above 50 items in the queue have been
removed for readability.

Immediately visible is that PQage
yields the best results across both sets
of experiments, although the advantage

is less visible in the second set of graphs
where four tables were used. The rotating
strategies with different offsets yield sim-
milar results, in some scenarios better and
some worse than QPage.

The naive approach yields the lowest re-
sults, with being over 50 items and thus
not showing up for higher utilisation fac-
tors. What this shows is that there is
a definate advantage of giving priority to
newer elements while potentially ignoring
older ones in the CAM [KM07].

3.2 Provable Worst-Case
Performance

While the policies described in the previ-
ous section highlight that adding a hard-

9

ware queue as a second data storage can
greatly increase the performance of cuckoo
hashing, it does not fully describe an in-
sert operation.

Arbitman, Naor, and Segev propose
an alteration to the previously described
scheme in an attempt to provide a prov-
able worst case performance while keep-
ing the number of elements in the queue
as low as possible without the need of a
complicated queue policy.

They follow the same approach made

by Kirsch and Mitzenmacher and use a
hardware CAM as a storage buffer, using
a very simple queue policy to determine
which element will be processed next.

The lookup procedure is unchanged
from the one described by Kirsch and
Mitzenmacher. What is worth noting here
is that Arbitman, Naor, and Segev focus
on cuckoo dictionaries with only d = 2 ta-
bles while most of the experimental data
from [KM07] was done with 4.

Figure 5: Comparison between traditional cuckoo hashing and augmented de-
amortisation [ANS09]

An insertion into the in [ANS09] pro-
posed structure is done as follows. The
entire process is done under a globally de-
fined parameter L. An item i1 = (k1, v1)
is to be inserted. Instead of placing it in

one of the tables, we bundle the item, to-
gether with an additional piece of informa-
tion and then insert this pair p1 = (i1, 1)
at the back of the queue.

We then procede to take elements of the

10

head of the queue and attempt to insert
them into our tables labled m1 and m2

when dealing with d = 2. Assume the ele-
ment at the head of the queue is labled
phead = (ihead, 2) we attempt to insert
ihead in the index H2(khead) → k′head as
with a normal cuckoo dictionary insertion.
If this space is empty, we successfully in-
sert ihead and procede by taking the next
element off the head of the queue for in-
sertion. If however m2[k

′
head] is occupied,

we displace the item and insert ihead in-
stead. We then procede to insert the dis-
placed element as usual in cuckoo hashing
by moving it into a different table.

This process is repeated until L ele-
ments have been moved either from the
queue to either m1 or m2 or internally be-

tween m1 and m2. When reaching L steps,
the currently nestless element is placed at
the head of the queue, with an extra bit
of information indicating which table it
should be inserted into next.

The deletion and lookup functions are
defined by the property that any ele-
ment x is either stored in m1(H1(kx)) or
m2(H2(kx)) or the queue.

This modified variant of cuckoo hash-
ing in a hardware context guarantees con-
stant lookup and deletion times with a
searchable CAM. It is however possible
to use this variant purely in software at
which point it is no longer guaranteed that
deletion and lookup will run in constant
time as the queue might hold a significant
amount of items [ANS09].

Figure 6: Comparison between traditional cuckoo hashing and augmented de-
amortisation [ANS09]

11

Very expensive rehashing of all items
can be avoided by leaving certain elements
in the CAM forever.

In Figure 5 an experimental run of this
augmented cuckoo hashing structure can
be found. We are comparing it to the av-
erage insert time values of a traditional
cuckoo dictionary and the respective max-
imum values. The graph doesn’t show
anything unexpected as we are artificially
limiting the step-delay to L, which in this
example was 3.

The experiment becomes interesting
when we consider the graph in Figure 6
which highlights the required queue size
during the experiment.

This shows that even with a queue of 50
elements, we are able to reliably and safely
insert elements into the augmented dictio-
nary, without showing a run-away effect
on insertion times such as the traditional
cuckoo dictionary.

This makes cuckoo hashing viable in a
new segment of datastorage problems, in-
cluding but not limited to hardware appli-
cations for routers and storage controllers.

4 Conclusion
We examined cuckoo hashing as an alter-
native to established strategies to manage
data collisions in hash based dictionaries.
We also analysed performance bottlenecks
and their impact on certain applications.

While some of the problems around
cuckoo hashing could be solved by Kirsch
and Mitzenmacher, Arbitman, Naor, and
Segev and others, there are still many
open questions about cuckoo hashing and
potential performance improvements.

Some of these open questions have been
discussed recently by Mitzenmacher and
showcase important research opportuni-
ties in order to make cuckoo hashing
faster, safer and potentially viable in more
applications.

These include a more in-depth analysis
of the use of queues and stashes to aid
cuckoo hashing in buffering difficult items
as well as more experimental data with
more than 2 tables.

What is also currently still unclear is
how randomness can impact the insertion
times of a cuckoo hashing dictionary.

When considering the de-amortization
of cuckoo hashing in hardware applica-
tions done by [KM07] and [ANS09], one
prospect was to allow an augmented dic-
tionary to be viable for routing tasks with
the aspect of clocked adversaries. While
it is assumed that the modifications done
are sufficient, there is a lack of security
analysis of these modifications.

What also seems to be lacking are some
modern performance analysis with larger
CPU cache sizes and different applica-
tions. Many more open questions are in-
cluded by Mitzenmacher in [Mit09].

2

References
[ANS09] Yuriy Arbitman, Moni Naor, and Gil Segev. “De-amortized cuckoo hash-

ing: Provable worst-case performance and experimental results”. In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics) 5555 LNCS.PART 1

12

(2009), pp. 107–118. issn: 03029743. doi: 10.1007/978-3-642-02927-
1_11. arXiv: 0903.0391.

[Die+94] Martin Dietzfelbinger et al. “Dynamic Perfect Hashing: Upper and Lower
Bounds”. In: SIAM Journal on Computing 23.4 (1994), pp. 738–761. issn:
0097-5397. doi: 10.1137/S0097539791194094. url: http://epubs.siam.
org/doi/abs/10.1137/S0097539791194094.

[DM03] Luc Devroye and Pat Morin. “Cuckoo hashing: Further analysis”. In: Infor-
mation Processing Letters 86.4 (2003), pp. 215–219. issn: 00200190. doi:
10.1016/S0020-0190(02)00500-8.

[Fot+05] Dimitris Fotakis et al. “Space efficient hash tables with worst case constant
access time”. In: Theory of Computing Systems. Vol. 38. 2. 2005, pp. 229–
248. isbn: 0302-9743. doi: 10.1007/s00224-004-1195-x.

[GS78] Leo J. Guibas and Endre Szemeredi. “The analysis of double hashing”. In:
Journal of Computer and System Sciences 16.2 (1978), pp. 226–274. issn:
10902724. doi: 10.1016/0022-0000(78)90046-6.

[KM07] Adam Kirsch and Michael Mitzenmacher. “Using a Queue to De-amortize
Cuckoo Hashing in Hardware”. In: (2007).

[Mit09] Michael Mitzenmacher. “Some open questions related to cuckoo hashing”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 5757
LNCS. 2009, pp. 1–10. isbn: 3642041272. doi: 10 . 1007 / 978 - 3 - 642 -
04128-0_1.

[OP03] Anna Ostlin and Rasmus Pagh. “Uniform hashing in constant time and
linear space”. In: Proceedings of the thirty-fifth ACM symposium on Theory
of computing - STOC ’03. 2003, p. 622. isbn: 1581136749. doi: 10.1145/
780542.780633. url: http://dl.acm.org/citation.cfm?id=780542.
780633.

[Pag01] Rasmus Pagh. “On the cell probe complexity of membership and perfect
hashing”. In: Proceedings of the thirty-third annual ACM symposium on
Theory of computing - STOC ’01 (2001), pp. 425–432. issn: 07349025. doi:
10.1145/380752.380836. url: http://dl.acm.org/citation.cfm?id=
380752.380836.

[Pag06] Rasmus Pagh. “Cuckoo hashing for undergraduates”. In: IT University of
Copenhagen (2006), pp. 1–6. url: http://www.itu.dk/people/pagh/
papers/cuckoo-undergrad.pdf.

[PR04] Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: Journal
of Algorithms 51.2 (2004), pp. 122–144. issn: 01966774. doi: 10.1016/j.
jalgor.2003.12.002.

[SG09] Mahima Singh and Deepak Garg. “Choosing Best Hashing Strategies and
Hash Functions”. In: 2009 IEEE International Advance Computing Confer-
ence, IACC 2009. 2009, pp. 50–55. isbn: 9781424429288. doi: 10.1109/
IADCC.2009.4808979.

13

